Full Length Research Paper

Antioxidant properties and cytotoxicity evaluation of methanolic extract of dried and fresh rhizomes of *Tulbaghia violacea*

O. S. Olorunnisola, G. Bradley and A. J. Afolayan*

School of Biological Sciences, University of Fort Hare, Alice 5700, South Africa.

Accepted 23 November, 2011

The rhizomes of *Tulbaghia violacea* Harv. used in Eastern Cape of South Africa for the treatment of heart diseases and several human ailments was investigated for antioxidant activity. The phytochemical content and toxicity of the fresh and dried rhizomes was also evaluated. Antioxidant activity was determined by spectrophotometric methods such as 2, 2-diphenyl-2-picrylhydrazyl (DPPH), hydrogen peroxide and lipid peroxidation scavenging activities and ferric reducing power assay. Toxicity evaluation was carried out using brine shrimps cytotoxicity test. Results obtained indicated that methanolic extract of the fresh rhizomes contained higher concentration of flavonoid, flavonol, phenolics, tannin and proanthocyanidin than dried sample. Antioxidant studies revealed that the two extracts exhibited potent antioxidant activities in concentration dependent manner. The fresh extract had higher radicals scavenging activity than the dried extract with 50% inhibition of DPPH, hydrogen peroxide and lipid peroxidation at a concentration of 35.0 ± 0.12, 19.3 ± 0.11 and 17.9 ± 0.15 µg/ml, respectively. The dried extract demonstrates lower ferric reducing ability with an absorbance of 0.61 when compared with fresh extract (0.79), butylated hydroxytoluene (BHT) (1.80) and rutin (1.20) standard at 50 µg/ml. The fresh and dried methanolic extracts of the plant exhibited high degree of cytotoxic activity with IC\textsubscript{50} values of 18.18 and 19.24 µg/ml, respectively. The results obtained in this present study indicated that the rhizome of *T. violacea* may serve as potential source of natural antioxidant, antimicrobial and anticancer agents.

Key words: *Tulbaghia violacea*, antioxidant activity, free radicals, polyphenolic compounds, cytotoxicity.

INTRODUCTION

The maintenance of pro-oxidant and antioxidant homoeostasis status in living cells is the primarily focus of research in recent years. Imbalance in pro-oxidant and antioxidant homoeostasis occasioned by excessive free radicals generation or insufficient antioxidants has been implicated in the development of several human disease conditions, such as atherosclerosis, hypertension ischaemic diseases, Alzhemiers’ disease, Parkinsonism and cancer (Narendhirakannam and Rageswari, 2010). Pro-oxidants are free radicals (superoxide, nitric oxide and hydroxyl radicals) produced in normal or pathological cell metabolism (Jadeja et al., 2009; Ponnari et al., 2011) and through exogenous sources, such as human exposure to ionizing radiation, injury, oxidative drugs and pollutants (Erasto and Mbwambo, 2009). Naturally, human body constantly quench and/or scavenge, activate a battery of detoxifying enzymes or inhibit the generation of ROS (Ayoola et al., 2011) through various mechanisms, such as antioxidant enzymes and molecules (Erasto and Mbwambo, 2009). Several synthetic substances, such vitamins, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate (PG) and tert-butylhydroquinone (TBHQ) (Vinay et al., 2010) are used as antioxidant, but are suspected to be toxic to human and experimental animals (Anagnostopoulou et al., 2006). Therefore, the development and utilization of more effective antioxidants...
of natural origin is very important (Kolar et al., 2011). Moreso, antioxidant evaluation of medicinal plant might give an insight to the mechanism(s) of their pharmacological activities.

Tulbaghia violacea belongs to the family of Alliaceae which is most commonly associated with garlic. T. Violacea is indigenous to the Eastern Cape, South Africa. The leaves and bulbs are widely used as an herbal remedy for various ailments (Bungu et al., 2006). Scientific evidence has demonstrated that T. violacea and its various preparations possess pharmacological activities. This includes screening for anthelmintic activity, anticancer and in vitro growth inhibition and induction of apoptosis in cancer cells (Bungu et al., 2006; Duncan et al., 1999; McGaw et al., 2000). Despite the fact that the rhizomes of T. Violacea are used for the treatment of many diseases, information on antioxidant activity, cytotoxicity or phytochemical contents is relatively scarce. It has been suggested that the pathophysiology of many diseases, such as atherosclerosis involves oxidative stress (Ratheesh et al., 2011). It is then, a good step in the right direction to determine the bioactivities of rhizomes of T. violacea.

The present study was designed to investigate and compare phytochemical constituents, free radicals scavenging activities and cytotoxicity of fresh and dried methanolic extracts of T. violacea using different in vitro experimental model.

MATERIALS AND METHODS

Chemicals

2, 2′-Diphenyl-2-picrylhydrazyl (DPPH), 2, 4, 6-tripyridyl-s-trizine (TPTZ) purchased from sigma chemicals co Ltd., Ascorbic acid and BHT were obtained from Sisco research laboratories Pvt. Ltd., Mumbai, India. Folin-Ciocalteu reagent, hydrogen peroxide (H₂O₂) was obtained from Merck Limited-India, Mumbai, India. Methanol HPLC grade from Sigma chemicals. Brine shrimps for cytotoxicity was obtained from Merck Limited-India, Mumbai, India. Folin-Ciocalteu reagent, hydrogen peroxide (H₂O₂) was obtained from Merck Limited-India, Mumbai, India. Methanol HPLC grade from Sigma chemicals. Brine shrimps for cytotoxicity were obtained from USA. The other chemicals and solvents used in the present study were of analytical grade obtained from local supplier in pure quality.

Collection of plant materials

Whole fresh rhizomes of T. violacea Harv. was collected from Alice, Eastern Cape, South Africa. They were collected in April, 2011 and authenticated by Professor D. S. Grierson of Botany Department, University of Fort Hare and was deposited (Sin 2010/2) at the Giflen Herbarium. Plant materials obtained were separated into two groups; one fresh and another oven dry at 40°C for 3 days.

Preparation and extraction of plant materials

327.4 g of chopped T. Violacea rhizome was homogenized in a blender with 1.6 L of 100% methanol at 4°C. The crude extracts were incubated at 37°C for 15 min, followed by centrifugation at 1500 ×g for 10 min at 4°C (Mohammad and Woodward, 1986). The supernatant was filtered using Whatman No. 1 filter paper and was concentrated under vacuo at 65°C using rotary evaporator. Since the rhizomes are fresh, the extract did not dry completely. The remaining aqueous solution was freeze dry and stored at 4°C in the dark. Plant yield was 9.6 g.

The oven dry plant was powdered using a laboratory blender powder. Fifty gram of the powdered plant was extracted with 100% methanol by shaking for 48 h in an orbital shaker. The extract was filtered using blood Buchner funnel and Whatman No.1 filter paper. The filtrate was concentrated to dryness under reduced pressure at 40°C using a rotary evaporator (Laborota 4000-efficient, Heldolph, Germany).

Total phenolics determination

Total phenol contents in the extracts were determined by the modified Folin-Ciocalteu method (Wolfe et al., 2003). An aliquot of the extract was mixed with 5 ml Folin-Ciocalteu reagent (previously diluted with water 1:10, v/v) and 4 ml (75 g/L) of sodium carbonate. The tubes were vortexed for 10 s and allowed to stand for 30 min at 40°C for colour development. Absorbance was then measured at 765 nm using the Hewlett Packard UV-Vis spectrophotometer. Samples of extract were evaluated at a final concentration of 1.0 mg/ml. Total phenolic content was expressed as mg/g tannic acid equivalent using the following equation based on the calibration curve: y = 0.1216x, R² = 0.9365, where x was the absorbance and y was the tannic acid equivalent (mg/g).

Total flavonoid determination

Total flavonoids content was measured by aluminium chloride colometric assay (Marinova et al., 2005). 1 ml of the extract or standard solution of catechin was added to 10 ml volumetric flask containing 4 ml of distilled water, 0.3 ml of 5% NaNO₂ was added to the mixture. After 5 min, 0.3 ml of 10% AlCl₃ was added. At the 6th min, 2 ml of 1 M NaOH was added to the mixture and the total volume was made up to 10 ml with distilled water. The solution was mixed well and the absorbance was measured against prepared reagent blank at 510 nm.

Total tannin determination

Tannins were determined using the Folin phenol reagent as reported by Folin and Ciocalteu (Folin and Ciocalteu, 1927). Briefly, 0.1 ml of the sample extract was added with 7.5 ml of distilled water and 0.5 ml of Folin phenol reagent, 1 ml of 35% sodium carbonate solution was diluted with 10 ml distilled water. The mixture was shaken well, kept at room temperature for 30 min and absorbance was measured at 725 nm. Blank was prepared with water instead of the sample. A set of standard solutions of tannic acid is treated in the same manner as described earlier and read against a blank. The results of tannins are expressed in terms of tannic acid in mg/g of extract.

Determination of proanthocyanidins content

The total proanthocyanidin were determined using the procedure reported by Sun et al. (1998). A volume of 0.5 ml of 0.1 mg/ml of extract solution was mixed with 3.0 ml of 4% vanillin-methanol solution and 1.5 ml hydrochloric acid, the mixture was allowed to stand for 15 min at room temperature, and the absorbance was measured at 500 nm. Total proanthocyanidin contents were expressed as quercetin (mg/g) using the following equation based on the calibration curve: y = 0.5825x, R² = 0.9277, where x is the absorbance and Y
is the quercetin equivalent.

Determination of total flavonol

Total flavonols were estimated using the method of Kumaran and Karunakaran (2007). To 2.0 ml of the sample (standard), 2.0 ml of 2% AlCl₃ ethanol and 3.0 ml (50 g/L) sodium acetate solutions were added. The absorption at 440 nm was read after 2.5 h at 20°C. Extract sample were evaluated at a final concentration of 0.1 mg/ml. Total flavonoid content was calculated as quercetin (mg/g) using the following equation based on the calibration curve: y = 0.0255 x, R² = 0.9812, where x is the absorbance and y is the quercetin equivalent (mg/g).

Determination of diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity

The method of Liyana-Pathirana and Shahidi (2005) was used for the determination of scavenging activity of DPPH free radical in the extract solution. A solution of 0.135 mM DPPH in methanol was prepared and 1.0 ml of this solution was mixed with 1.0 ml of the extract prepared in methanol containing 0.02 to 0.1 mg of the plant extracts and standard drugs BHT and ascorbic acid. The reaction mixture was vortexed thoroughly and was left in the dark at room temperature for 30 min. The absorbance of the mixture was measured spectrophotometrically at 517 nm. The ability of the plant extract to scavenge DPPH radical was calculated by the equation:

\[
\text{DPPH radical scavenging activity} = \left(\frac{\text{Abs control} - \text{Abs extract}}{\text{Abs control}} \right) \times 100;
\]

where Abs control is the absorbance of the organic upper layer was measured at 532 nm. Inhibition of lipid peroxidation percent by the extract was calculated as [(1-E)/C] × 100, where C is the absorbance value of the fully oxidized control and E is the absorbance in the presence of the extract.

Reducing power assay

The Fe³⁺ reducing power of the extract was determined by the method of Oyaizu (1986) with a slight modification. Different concentrations (0.02 to 1.0 mg/ml) of extract (0.5 ml) were mixed with 0.5 ml of 0.2 M phosphate buffer (pH 6.6) and 0.5 ml of 0.1% potassium hexa-cyanoferrate, followed by incubation at 50°C in water bath for 20 min. After incubation, 0.5 ml 10% trichloroacetic acid (TCA) was added to terminate the reaction. The upper portion of the solution (1 ml) was mixed with 1 ml of distilled water and 0.1 ml of 0.01% FeCl₃ solution was added. The reaction mixture was left for 10 min at room temperature and the absorbance was measured at 700 nm against appropriate blank solution. All tests were performed in triplicates. A higher absorbance of the reaction mixture indicated greater reducing power. The absorbance obtained was converted to ascorbic acid equivalents in milligrams per gram fresh and dried material (mg g⁻¹) using ascorbic acid standard.

Determination of H₂O₂ inhibition activity

The H₂O₂ inhibition effect of the extracts was assessed by the method of Ilhami (Ilhami et al., 2005). Briefly, a solution of hydrogen peroxide (40 mM) was prepared in phosphate buffer (pH 7.4). 1.0 ml of the sample was added to a 0.6 ml of hydrogen peroxide solution (40 Mm). The absorbance of the hydrogen peroxide at 230 nm was determined after 10 min at room temperature against a blank solution containing phosphate buffer solution without hydrogen peroxide. BHT and ascorbic acid were used as positive controls. The percentage scavenging of hydrogen peroxide of the samples was calculated using the following formula:

\[
\text{H}_2\text{O}_2 \text{ inhibition capacity} (%) = \left(1 - \left(\frac{\text{H}_2\text{O}_2 \text{ concentration of sample}}{\text{H}_2\text{O}_2 \text{ concentration of control}} \right) \right) \times 100.
\]

Lipid peroxidation inhibition assay

A modified thiobarbituric acid reactive species (TBARS) assay was used to measure the lipid peroxide formed using egg yolk homogenates as lipid-rich media, as described by Ruberto et al. (2000). Briefly, 0.5 ml egg yolk homogenate (10% v/v) was added to 0.1 ml of the extract (10 μg/ml). The volume was then made up to 1.0 ml with distilled water. Thereafter, 0.05 ml of FeSO₄ (0.07 M) was added and the mixture was incubated at 37°C for 30 min. Then, 1.5 ml 20% acetic acid (pH 3.5) was added, followed by 1.5 ml of 0.8% (w/v) thiobarbituric acid (TBA) in 1.1% of sodium dodecyl sulphate (SDS). The resulting mixture was vortex mixed and heated at 95°C for 1 h. After cooling, 5 ml of b utanol was added and the mixture was centrifuged at 3000 rpm for 10 min. The absorbance of the organic upper layer was measured at 532 nm. Inhibition of lipid peroxidation percent by the extract was calculated as [(1-E)/C] × 100, where C is the absorbance value of the fully oxidized control and E is the absorbance in the presence of the extract.

Brine shrimp lethality test

Shrimp eggs were allowed to hatch and mature as nauplii in two days in a hatching tank filled with seawater. The free-swimming nauplii were attracted by a light to a compartment from which they could be collected for the assay proper. Vials containing 4 to 20 μl samples were prepared by dissolving the extracts in distilled water and transferring the solution to each vial. The solvent was evaporated at room temperature for 72 h and sea water was added to achieve the correct concentration. 15 shrimps were added to each vial via a disposable pipette. The number of deaths out of 15 shrimps per dose was recorded after 24 h and LC₅₀ values obtained from the best-fit line slope. The control solution consists of 15 nauplii in the sea water without the extract.

Statistical analysis

Statistical analysis was carried out with Statistical Package for Social Sciences (SPSS). The data was expressed as the mean ± standard deviation and a probability of less than 0.05 (P < 0.05) was considered to be statistically significant. Graph was drawn using Microsoft Office excel, 2007 software.

RESULTS AND DISCUSSION

Total phenolics, flavonoid, flavanol, tannin and proanthocyanadin

Phenolics compounds have been reported to be crucial for bioactivities in plants (Nagavani et al., 2010). They serve as antioxidant and exhibit a wide spectrum of medicinal properties, such as anti-cancer, anti-allergic and cardio-protective (Banerjee and Bonde, 2011).

Analysis of phenolics compounds in the fresh and dried methanolic extract of rhizome of T. Violacea (RTV) revealed that the extracts possesses high concentration of total flavonoid ranging from (38.9 to 67.9 mg/g quercetin equivalent) followed by total phenolics (18.3 to 38.2 mg/g tannic acid equivalent, flavones (25.3 to 11.5 mg/g tannic acid equivalent), tannin (14.6 to 37.4 mg/g tannic acid equivalent) and proanthocyanadin (17.2 to 8.4 mg/g).
Table 1. Polyphenol contents of methanolic extracts of fresh and dried rhizomes of *T. violacea*.

<table>
<thead>
<tr>
<th>Phenolic</th>
<th>Fresh</th>
<th>Dried</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol (^a)</td>
<td>38.2 ± 0.01</td>
<td>18.3 ± 0.04*</td>
</tr>
<tr>
<td>Tannin (^b)</td>
<td>37.4 ± 0.13</td>
<td>14.6 ± 0.09*</td>
</tr>
<tr>
<td>Flavonoid (^c)</td>
<td>67.9 ± 0.11</td>
<td>38.9 ± 0.15*</td>
</tr>
<tr>
<td>Flavonol (^d)</td>
<td>25.3 ± 0.00</td>
<td>11.5 ± 0.02*</td>
</tr>
<tr>
<td>Proanthocyanidins (^e)</td>
<td>17.3 ± 0.21</td>
<td>8.40 ± 0.16*</td>
</tr>
</tbody>
</table>

\(^a,b\) Expressed as mg tannic acid/g of dry plant material. \(^c,d,e\) Expressed as mg quercetin/g of dry plant material. *P < 0.05.

DPPH radical scavenging activity

The methanolic extracts of dry and fresh rhizomes of *T. Violacea* (RTV) were tested for antioxidant activity using DPPH radical scavenging assay. The antioxidant ability of plant products to donate hydrogen to DPPH radical, thus converting it into stable molecules has been attributed to phenolic compounds, such as flavonoid, polyphenol, tannins and terpenes (Diouf et al., 2009; Rahman and Moon, 2007). Therefore, phenolics compounds due to their redox properties play an important role in adsorbing and neutralising free radicals, quenching singlet and triplet oxygen, or decomposing peroxides (Hasan et al., 2008). The extracts in this study were able to reduce the stable DPPH, thus changing the colour from purple to yellow. Fresh extract of *T. violacea* demonstrated higher percentage (65.3%) DPPH scavenging activity (Figure 1) when compared with dried extract (51.4%) or other *Allium* species like green onion, yellow onion (Noureddine, 2005), but exhibited lower percentage DPPH inhibition when compared with red onion, purple onion, garlic (Noureddine, 2005) and ascorbic acid standard (70.2%). The strong DPPH activity

mg/g quercetin equivalent), respectively (Table 1). Our results showed that the concentration of polyphenolic compounds in the dry extract was significantly (P < 0.05) lower than the fresh extract.

The concentration of the aforementioned phytochemicals present in *T. Violacea* followed similar trend reported in three varieties of *Allium sativum* by Narendhirakannan et al. (2010). However, the amounts of phenolic compounds are lesser than what was obtained in the three varieties of *A. sativum*. The differences in the content of metabolites may be due to the nature of the soil, microclimate variations (Millogo-Kone, 2008), processing methods (Choi et al., 2008) and generic, since the same method was used by Narendhirakannan et al. (2010) in the extraction of the three varieties of *A. sativum* was employed in this study. The high levels of phytochemicals in the extracts indicates that rhizomes of *T. violacea* could be a good source of anti-inflammatory, anti-clotting, antioxidant, immune enhancers and hormone modulators (Okwu and Emenike, 2006). This may therefore, explain the medicinal value of the plant in management and treatment of oxidative stress induces disorder.
Table 2. Comparison of 50% inhibitory concentration for DPPH, hydrogen peroxide radicals scavenging activity and lipid peroxidation.

<table>
<thead>
<tr>
<th>Sample and standard</th>
<th>DPPH (µg/ml)</th>
<th>H₂O₂ (µg/ml)</th>
<th>Lipid peroxidation (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRTV</td>
<td>35.0 ± 0.12</td>
<td>19.3 ± 0.11*</td>
<td>17.9 ± 0.15*</td>
</tr>
<tr>
<td>Ascorbic acids</td>
<td>33.6 ± 0.22</td>
<td>12.7 ± 0.14</td>
<td>7.99 ± 0.20</td>
</tr>
<tr>
<td>DRTV</td>
<td>48.7 ± 0.41*</td>
<td>36.5 ± 0.16*</td>
<td>41.1 ± 0.18*</td>
</tr>
</tbody>
</table>

FRTV represents fresh methanolic extract of rhizomes of *T. violacea*. DRTV represents dried methanolic extract of rhizomes of *T. violacea*. *P < 0.05.

Figure 2. Reducing power of methanolic extract of fresh and dried rhizome of *T. violacea*. Each value is expressed as mean ± SD (n = 3).

(50% inhibition concentration of 35.0 ± 0.12 mg/ml) of the fresh extract rhizome of RTV (Table 2) agreed favourably with the report of Drużyńska and Wojda (2007) in which they submitted that the DPPH radical scavenging activities of fresh extracts of garlic, oregano and rosemary is higher than the dried. The results of the present study indicated that RTV had good antioxidant activity.

Reducing power of extract

Reducing power ability of plant extracts may serve as a significant reflection of the antioxidant activity serve as a significant reflection of the antioxidant activity (Jayanthi and Lalitha, 2011).

Compounds with reducing power indicate that they are electron donors and can reduce the oxidized intermediates of lipid peroxidation processes, thereby, acting as a primary and secondary antioxidants (Chada and Dave, 2009). The presence of reductants in *T. violacea* rhizome causes the reduction of the Fe³⁺/ferricyanide complex to the ferrous form. Since, Fe⁴⁺ has been implicated in the generation of hydroxyl radical ion, it is logical to assume that the plant extracts are capable of inhibiting hydroxyl radical Fe³⁺/induced generation and might serves as potential antioxidant. The reducing ability of methanolic extracts of dry and fresh rhizome of *T. violacea* was very potent since increased absorbance indicated increased reducing power (Figure 2). Our results also revealed that the reducing ability of the extracts is concentration dependant. This observation was in agreement with what was reported for other varieties of *A. sativum* bulb (Narendhirakannan and Rajeswari, 2010). Although, the reducing power of the fresh extract was higher than the dry, which was comparably lower than BHT and rutin standard. In view of the reductants activity of the extract, further studies need to be carried out to identify the individual compound(s) that aids in the reducing power.

Hydrogen peroxide radical scavenging activity

Hydrogen peroxide (H₂O₂) is one of the major by products of incomplete oxygen metabolism (Ilias and Carlos, 2001). It is not a free radical by definition because it
Olorunnisola et al. 2495

Figure 3. Scavenging ability of methanolic extracts of fresh and dried rhizomes of *T. violacea* (RTV) on hydrogen peroxide. Each value is expressed as mean ± SD (n = 3).

Lipid peroxidation assay

Lipid peroxidation mediated by free radicals is considered to be the major mechanism of cell membrane destruction and cell damage (Surapaneni and Vishnu, 2009). The damage has been implicated in the pathophysiology of various human diseases, such as atherosclerosis, diabetes, and cancer. The initiation of peroxidation sequence in membrane or polyunsaturated fatty acids is due to the abstraction of a hydrogen atom from the double bond in the fatty acids (Wagner et al., 1994). Malondialdehyde (MDA) is the major product of lipid peroxidation and is used to study the lipid peroxidation process. Incubation of egg yolk homogenates in the presence of FeSO₄ causes a significant increase in lipid peroxidation. The ability of the methanolic extract of rhizome of *T. Violacea* to inhibit the process of lipid peroxidation was tested using the method of Ruberto et al. (2000). Table 1 shows that the extract demonstrates high percentage inhibition of lipid peroxidation in egg homogenate (66.8%). The low IC₅₀ value (17.4 µg/ml) (Table 2) suggested that extract of rhizome of *T. Violacea* possessed high anti-lipid peroxidative agents. This finding is similar to the report that garlic (*A. sativum*) extract significantly reduced lipid peroxidation (Sundaresan and Subramanian, 2005). Our results also showed that the percentage of lipid peroxidation inhibiting activity of the extract and the standard (Ascorbic acid) increases with concentrations. However, the activity of the extract is lower than the standard as reflected by the value of IC₅₀. Phenolic compounds have been reported to be activating lipid free or prevent the decomposition of...
Inhibition of lipid peroxidation (%)

Concentration in µg/ml

Figure 4. Scavenging ability of methanolic extracts of fresh and dried rhizomes of T. violacea (RTV) on lipid peroxidation. Each value is expressed as mean ± SD (n = 3).

Table 3. Brine shrimp lethality test of Methanolic extract of rhizome of T. Violacea.

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>Methanolic extract of T. violacea rhizome</th>
<th>Average no. of survivors</th>
<th>Average no. of dead</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>15.0 ± 0.00</td>
<td>15.0 ± 0.00</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>3.0 ± 0.00</td>
<td>12.0 ± 0.00</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>control</td>
<td></td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LC₅₀</td>
<td></td>
<td>18.18 µg/ml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data were expressed as mean ± SD. LC₅₀ values were calculated by extrapolation.

hydrogen peroxides into free radicals (Maisuthisakul et al., 2007). Hence, the observed anti-lipid peroxidation activity of the extract may be due to the high concentration of phenolic compounds in the extract (Figure 4).

Cytotoxicity assay

Brine shrimp lethality is a general bioassay, which is indicative of cytotoxicity, antibacterial activities, pesticidal effects and various pharmacologic actions (Mann et al., 2011). The extracts studied in this work showed significant lethality against brine shrimp with IC₅₀ (half-inhibition) values 18.18 µg/ml (Table 3). This significant lethality of the crude plant extracts (IC₅₀ values less than 100 ppm or µg/ml) to brine shrimp is indicative of the presence of potent cytotoxic and probably insecticidal compounds (Morshed et al., 2011). The level of toxicity observed in this study may have resulted from the presence of multiple compounds in the crude extracts, acting in synergy or independently. Therefore, further isolation of the highly active compound(s) from rhizomes of T. Violacea may lead to the discovery of new cytotoxic compounds.

Conclusion

This study suggests that the methanolic extract of rhizome of T. Violacea may be a source potent, antioxidant and cytotoxic compounds especially when use fresh. The in vitro bioassays provide an ample knowledge of antioxidant, free radical scavenging and cytotoxicity activities of T. Violacea and thus can be further investigated for in vivo studies.

ACKNOWLEDGEMENT

This study was supported with a grant from the National Research Foundation of South Africa.
REFERENCES

